NLCS Maths Department
Contact us:
  • Home
  • IB Maths
    • IB Workbooks etc
    • Sample Explorations
  • A Level
    • Year 12 >
      • Y12 Singles
      • Y12 Furthers
    • Year 13 >
      • Y13 Singles
      • Y13 1.5s
      • Y13 Furthers
    • Exam papers
    • A Level resources >
      • Large Data Set
  • Year 11
    • Protected Revision Materials
    • What sixth form maths should I take?
  • Year 10
  • Year 9
  • Year 8
  • Year 7
  • Challenges
    • Junior Kangaroo Practice
    • Maths Challenge Past papers
    • Super Mentoring
  • Enrichment
  • University
    • Fun reading for interview
    • STEP
    • MAT
  • Work Experience
    • Project ideas
  • Learn to code!
  • Maths Talks @NLCS
  • Blog
  • Calculators
  • Books and Movies
  • Parents & FAQ
  • Junior School
    • Maths Challenge
    • Pi Day 2019
    • Summer 2019 Junior School
    • Useful videos
  • Maths Teaching
  • Maths Society
    • Maths Society Application form

Year 12 IB HL Application and Interpretation

Preparation for the April Exams 2020:

Revision topics for Year 12 IB HL AI

You should revise all of:
Chapter 1 Measuring space: (GCSE revision and Y12 material)
Chapter 2 Representing and describing data: sections 2.1 and 2.2 only (without standard deviation)
Chapter 3 Dividing up space
Chapter 4 Modelling constant rates of change: sections 4.1 to 4.4 only
Chapter 6 Modelling relationships with functions
Chapter 7 Modelling rates of change
Chapter 8 Modelling periodic phenomena
Chapter 9 Modelling with matrices: except section 9.5
Chapter 10 Analyzing rates of change

​Prior Knowledge

1.1- Operations with numbers in standard form
1.5- Laws of exponents with integer and rational exponents
1.6- Approximation, bounds of rounded numbers, percentage error, estimation
2.1- Different forms of the equation of a straight line, including parallel and perpendicular lines
3.1- Volume and surface area of 3D solids. 3D trigonometry.
4.2- Presentation of data: frequency tables, histograms, cumulative frequency graphs
5.3, 5.5- Differentiation and integration of integer powers of x (additional maths)

teacher 1

Year 12 Autumn Term - First Half

​2.2 domain, range, inverse, 1-1, many-1
2.3 graph sketching with & without GDC
2.4 asymptotes, graphical solution of equations
2.5 linear, quadratic, cubic, exponential models
2.5 Direct/inverse variation
2.6 modelling skills
2.7 composite functions, inverse function on restricted domain
Test on sequences, series, functions and trigonometry​

Year 12 Autumn Term - Second Half

SMC 
2.8 Transformations of graphs
1.10 Simplifying expressions, both numerically and algebraically
1.7 amortization and annuities using technology
2.9 Natural logarithm, logistic and piecewise models
2.10 Scaling numbers using logarithms, linearizing data and interpretation of log-log and semi-log graphs
3.6 Voronoi diagrams 
Test on everything so far, review test and splitting of groups as required

Year 12 Spring Term - First Half

SMC 
2.8 Transformations of graphs
1.10 Simplifying expressions, both numerically and algebraically
1.7 amortization and annuities using technology
2.9 Natural logarithm, logistic and piecewise models
2.10 Scaling numbers using logarithms, linearizing data and interpretation of log-log and semi-log graphs
3.6 Voronoi diagrams 
Test on everything so far, review test and splitting of groups as required

Year 12 Spring Term - Second Half

4.2, 4.3 Mean, median, mode, variance, standard deviation, IQR, effect of linear changes to the data.. Grouped data: mid-interval values, width, upper and lower boundaries. Production and understanding of box and whisker diagrams.
4.4 Bivariate data: PMCC, scatter diagrams, regression line of y on x and x on y, use of the regression line for prediction purposes.
4.10 Spearman’s rank correlation coefficient, limitations
5.1 Introduction to the concept of limit. Derivative interpreted as gradient function and as rate of change.

Year 12 Summer Term - First Half

Internal Exams
5.2, 5.3 Increasing/decreasing functions, graphical interpretation. Derivatives of powers of x and linear combinations of.
Extended Essay Week
5.4 Tangents and normal and their equations.

Year 12 Summer Term - Second Half

teacher 2

Year 12 Autumn Term - First Half

1.2 Arithmetic sequences and series
1.3 geometric sequences and series
1.4 Financial applications of geometric sequences and series.
1.11 The sum of infinite geometric series
1.8 Using technology for solving polynomial equations and systems of linear equations
3.4, 3.7 Radians, arc length and sector area
3.8 Definition of cos, sin and tan in terms of unit circle, trig identities and solving trig equations using graphs.
3.2, 3.3 Reminder of cosine, sine rules and area of triangle formula
1.5 Laws of exponents with integer exponents
​1.9 Laws of logarithms
2.5, 2.9 Sinusoidal models

Year 12 Autumn Term - Second Half

Micro-exploration
3.5 Equations of perpendicular bisectors
3.10 vectors
3.11 vector equation of line
3.12 vectors and kinematics
3.13 scalar product, angle between vectors, cross product

Year 12 Spring Term - First Half

1.14 Matrices
1.15 Eigenvalues and eigenvectors, diagonalisation
4.5 Concepts of trial, outcome, sample space (U) and event. Probability of an event. Complementary events A and A'. Expected number of occurrences.

Year 12 Spring Term - Second Half

4.6 Solving probability problems using Venn diagrams, tree diagrams, sample space diagrams and tables of outcomes.
Combined events, formula for P(AUB), mutually exclusive events.
Conditional probability, independent events and Bayes' theorem for a maximum of three events.
4.7 Concept of discrete random variable and discrete probability distribution. Definition and use of pdf. Expected value (mean), mode, median, variance, standard deviation.
4.8 Binomial distribution, its mean and variance. NOT REQUIRED:  formal proof of means and variances.   
4.9 Normal distribution

Year 12 Summer Term - First Half

Internal Exams
3.14 Graph theory
Extended Essay Week
3.15 (Weighted) adjacency matrices. Walks. Number of k-length walks between two vertices.  Transition matrices.

Year 12 Summer Term - Second Half

Introduction of exploration
3.16 Tree and cycle algorithms with undirected graphs. Walks , trails, paths, circuits, cycles. Eulerian trails and circuits. Hamiltonian paths and cycles. MST graph algorithms, Chinese postman problem and algorithm, travelling salesman problem.
5.5, 5.6, 5.7  Integration as anti-differentiation. Local maxima and minima. Optimisation problems in context.